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15 Rayleigh’s dissipation function at work

E. Minguzzi∗

Abstract

It is shown that the Rayleigh’s dissipation function can be successfully ap-

plied in the solution of mechanical problems involving friction non-linear

in the velocities. Through the study of surfaces at contact we arrive at

a simple integral expression which gives directly the Rayleigh dissipation

function in terms of generalized coordinates. In this way the solutions of

Lagrangian problems with friction are reduced to often elementary cal-

culations of the kinetic energy, the potential energy and the Rayleigh

dissipation function. Some examples of pedagogical interest are given.

1 Introduction

On June 12th, 1873 Lord Rayleigh presented the memoir “Some general the-
orems relating to vibrations” to the London Mathematical Society [1]. In the
second section entitled “The dissipation function” (see also section 81 of his 1877
monumental work “The theory of sound” [2]) he recalls that the conservative
forces can be included into a potential function V so that Lagrange equations
read

d

dt

∂T

∂q̇k
−

∂T

∂qk
+

∂V

∂qk
= Q

(nc)
k , (1)

leaving us with just the non-conservative generalized forces Q
(nc)
k . He continues

The principal object of the present section is to show that another

group of forces [so far included in Q
(nc)
k , n.a.] may be advantageously

treated in a similar manner. The forces referred to are those which
vary in direct proportion to the component velocities of the parts
of the system. It is well known that friction, and other sources of
dissipation, may be usefully represented as following this law ap-
proximately; and even when the true law is different, the principal
features of the case will be brought out.

In a slightly more general form his argument is as follows. First recall that
the Lagrange equations are obtained decomposing the mechanical system into
n idealized point particles of mass ma and positions ra, a = 1, · · · , n. The
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holonomic constraint is expressed through the dependence ra(t, q) where qk,
k = 1, · · · , l are the generalized coordinates, where l ≤ 3n. The Lagrange
equations are then a restatement of D’Alembert’s principle of virtual works
(summation over repeated non-particle indices is understood; here b = 1, · · · , n)

∑

b

(

−mbab + F
(active)
b

)

· δrb = 0, δrb =
∂rb
∂qk

δqk, (2)

where F
(active)
b might include forces coming from the constraints that violate

the frictionless nature (smoothness) of the constraint (so, for instance, friction
due to contact contributes to this term). In Equation (1) the generalized force
is

Q
(nc)
k =

∑

b

F
(nc)
b ·

∂rb
∂qk

. (3)

where F
(nc)
b is the non-conservative active force acting on particle b. It will also

be useful to recall that

va(t, q, q̇) =
∂ra
∂qk

q̇k +
∂ra
∂t

, (4)

so that
∂va

∂q̇k
=

∂ra
∂qk

. (5)

Rayleigh considers the hypothesis that on particle a acts a (Euclidean) non-
conservative force linear in the velocities, which reads in Cartesian components
(here i, j = 1, 2, 3)

Fai = −Kijv
j
a, (6)

whereK is a symmetric matrix which might depend on time and on the positions
{ra}. This force can be written as −∇va

R where

R =
1

2

∑

a

Kijv
i
av

j
a (7)

is termed dissipation function and K is the dissipation matrix. Thus recalling
Eqs. (3) and (5)

Q
(nc)
k = −

∑

a

∇va
R

∂va

∂q̇k
+Q

(nc′)
k = −

∂R

∂q̇k
+Q

(nc′)
k (8)

where Q
(nc′)
k includes all the generalized non-conservative forces not taken into

account by the Rayleigh term. The Lagrange equations become

d

dt

∂T

∂q̇k
−

∂T

∂qk
+

∂V

∂qk
= −

∂R

∂q̇k
+Q

(nc′)
k , (9)

where R(t, q, q̇) is a quadratic polynomial in q̇, which is homogeneous of second
degree when the constraints are independent of time. It can be observed that,
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for constraints independent of time, the power lost due to Rayleigh’s friction
forces is

∂R

∂q̇k
q̇k = 2R. (10)

Rayleigh then goes on to apply (9) to the study of the small oscillations of a
system to which damping has been added.

The content of this memoir section can be found, almost unaltered, in the
few textbooks on mechanics that mention the Rayleigh dissipation function
[3–7]. Given the fact that Rayleigh only considered the case of viscous (Stokes,
linear) friction, many references [4, 8–10] define the Rayleigh function directly
as a homogeneous quadratic form in the generalized velocities which returns
the friction force. Very few references [11, 12] consider general friction forces
which admit a dissipation potential, however, when this happens it remains as
a theoretical suggestion and it is not explained which friction forces admit such
potential and how R should be calculated in practice. The only exception is the
book by Lurie [13], recently translated into English, were general friction forces
are considered.

Given these limitations, the Rayleigh dissipation function was considered
as a kind of mathematical artifice, perhaps worth mentioning for its historical
interest but with almost no application saved for the special exception of vis-
cous forces. The widespread belief that this function is only useful for linear
friction, so often held in research papers [14], became one of the motivations
for the development of different methods, often variational in nature, which in-
cluded Lagrangians containing fractional derivatives [14], coupled systems [15],
or modified Lagrangians [16–19], most of these techniques being rather special
and still adapted to the linear case.

In this work, joining Lurie [13], I wish to provide some results and examples
which clarify the usefulness of the Rayleigh dissipation function for non-linear
frictions, including the Coulomb friction. It will become clear that the Lagrange
equations are mostly useful for their covariance, not for their variational origin.
Recall, that (9) are covariant in the sense that under change of coordinates
q′(t, q) the equations for q′ are obtained from those for q through multiplication
by the Jacobian of the transformation. As a consequence, the Rayleigh modi-
fication is equally useful as it preserves covariance though it has no variational
interpretation.

2 Surfaces at contact

The Lagrange equations are mostly useful in the study of dry friction in me-
chanical problems involving contact between surfaces. Let us consider a body
B moving over a flat surface S0. Let S1 be a flat surface of B at contact with
S0. For simplicity we may identify B with S1 collapsing normally all its mass
into this surface.

Remark 2.1. This operation is practically justified only when B is slender. If
its height is too large compared to the base then in the subsequent analysis of
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wear by friction one would have to consider the way B tilts over S0 as it gets
consumed by friction on the base S1. Such effect will be ignored (for a related
analysis see [20]). Observe that a full treatment of this problem would require
the introduction of two angular coordinates.

Let us first consider the simple case of uniform translational motion of veloc-
ity v of S1 over S0, where S0 is at rest. Let N be the normal force between the
surfaces, which we assume to be homogeneously distributed so that the pres-
sure p among the surfaces is independent of the point. We shall assume that the
dry friction between these surfaces depends only on the chemical nature of the
surfaces, on the velocity v and on the normal force N between them as follows

F = −Nµ(v)v̂ (11)

where µ(v) is a dimensionless dynamical friction coefficient which depends on the
module of the velocity. This function depends greatly on the surfaces at contact.
Typically, for non-lubricated friction µ(v) starts from some non-zero value, it
decreases, and then it increases again with velocity. For lubricated friction
it starts linearly in the velocity, might decrease and reach a local minimum
and then it increases again for large velocities, see [21] and references therein.
However, this behavior is not universal [22]. If µ is independent of velocity we
have Coulomb friction while if µ is linear we have Stokes (viscous) friction.

As it stands this formula is not particularly useful since, in real life, the
pressure between the surfaces will not be homogeneous and the velocity will
depend on the relative motion which need not be translational as it might include
some rotation.

Therefore, let us consider a more general case in which the flat surface S0

is not necessarily at rest, although we shall assume that it keeps its orientation
(normal vector) on space. The movement of the flat surface S1 over S0 can be
arbitrary although they have of course the same normal vector.

Let us decompose S1 into n regions of equal area ∆A which we idealize as
point particles. The particle a, a = 1, · · · , n, has velocity va while the velocity
of the point of S0 instantaneously at contact with particle a has velocity ba.
Let

v(r)
a = va − ba (12)

be the relative velocity of S1 with respect to S0 at the a location. Then on
particle a acts a force

F(nc)
a = −pa∆Aµ(v(r)a )v̂(r)

a , (13)

where pa is the pressure on the area element. Let
∫ v
µ dv be any indefinite

integral of the function µ. We define

R = ∆A
∑

a

pa

∫ v(r)
a

µ dv, (14)

so that indeed

−∇va
R = −

∂R

∂v
(r)
a

∇va
v(r)a = −∆Apa µ(v

(r)
a )v̂(r)

a = F(nc)
a , (15)
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thus

Q
(nc)
k = −

∑

a

∇va
R

∂va

∂q̇k
= −

∂R

∂q̇k
. (16)

Taking the limit n → ∞, and denoting with dA the area element, we obtain

R =

∫

S1

dAp(x)

∫ v(r)(x)

µ dv. (17)

Thus the non-conservative generalized force can also be written

Q
(nc)
k = −Nµ(v(r))

∂v(r)

∂q̇k
, (18)

where the average is made using the normalized pressure p/N as weight.
Concerning the value of p(x) we can make two possible assumptions. The

simplest is that the force N is uniformly distributed hence p is constant. How-
ever, for non-lubricated contact we can also apply Reye’s assumption [23, 24]
(see also Holm’s and Archard’s work [25, 26]), which tells us that the pressure
satisfies p = k/v(r), where k is a normalization constant.

This inverse proportionality has the following explanation: we might imagine
that at the microscopic level friction causes wear, and that the mass removed
from B on a certain region of the surface S1 is proportional to the work done by
friction forces on that region, that is, it is proportional to pv(r). But this work
must be constant over regions with the same area, for otherwise as time passes
the profile of the body B would change, which would increase the pressure and
hence the friction force precisely on those regions where we underestimated its
action. Stated in another way, a constant product pv(r) is the only possibility
that makes the profile of B constant and hence the shape of S1 stationary.

Remark 2.2. As a word of caution, this justification is somewhat weak because,
particularly for elastic materials, the shape of the surface at contact may change
in dependence of the strength of the applied forces, and the assumption of sta-
tionarity for the profile could also fail. At the microscopic level S1 could be
non-flat, for instance due to inhomogeneous stresses or because wear distributes
between S0 and S1 in an inhomogeneous way rather than disappearing imme-
diately from contact with the body B. On the contrary the argument requires
the ideal flatness of S1. Wear scarring the surface, wear hardening, and many
other phenomena may alter the surface S1 during friction modifying pressure
in ways not accounted for by Reye’s idealization. Still Reye’s assumption is
quite elegant and allows us to illustrate the dependence of the next results on a
non-trivial function p(v(r)).

Clearly, the proportionality constant k in Reye’s hypothesis is such that

N =

∫

S1

k

v(r)(x)
dA, (19)
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thus

Homogeneous pressure:

R = N
(

∫

S1

dA
)−1

∫

S1

dA

∫ v(r)(x)

µ dv. (20)

Reye’s hypothesis:

R = N
(

∫

S1

dA

v(r)(x)

)−1
∫

S1

dA

v(r)(x)

∫ v(r)(x)

µ dv. (21)

Finally, we calculate the power lost due to friction forces. From Eq. (13)

P = −
∑

a

F(nc)
a · v(r)

a =
∑

a

pa ∆Aµ(v(r)a )v(r)a ,

which in the continuum limit n → ∞ gives

Homogeneous pressure:

P = N
(

∫

S1

dA
)−1

∫

S1

µ(v(r)) v(r) dA. (22)

Reye’s hypothesis:

P = N
(

∫

S1

dA

v(r)(x)

)−1
∫

S1

µ(v(r)) dA. (23)

This power is not necessarily 2R as for the original Rayleigh’s viscous model.
The usefulness of Rayleigh’s dissipation function for the solution of problems

with (non-linear) friction should now be apparent. We have just to calculate
R, and this can be done directly using generalized coordinates so that its ex-
pression will have a dependence on the generalized velocities. In other words
we passed through a Cartesian study of the forces only to obtain the expression
of the Rayleigh function, but once it has been established we should no more
be involved with Cartesian coordinates. So, once L and R are calculated the
equations of motion follow from Eq. (9).

We feel that some examples may help to clarify the method.

2.1 Exercise: The conveyor belt

In 1860 Bouchet did some experiments to determine the velocity dependence of
the dynamical friction coefficient µ. One of the surfaces was made of iron while
the other was made by wood, leather or iron [27]. He found the approximate
dependence

µ(v) =
µ0 − µ∞

1 + av
+ µ∞

where a, µ0, µ∞ are positive constants. Observe that the friction coefficient
decreases till it reaches a constant value for high velocities. This dependence
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can probably be replaced by more precise results [28], but we shall assume its
validity for the sake of the exercise. Coulomb friction is recovered for a → 0,∞.

So let us consider here a block of wood over a conveyor belt. Let (x, y) be
horizontal Cartesian coordinates of the block on a frame at rest, and let the
conveyor belt move at constant speed (v0, 0). A person standing next to the
belt, like in a grocery check-out line, pushes the block with a force (Fx, Fy) and
we assume for simplicity that the block does not rotate. We want to determine
the equations of motion.

The result does not depend on whether we assume the Reye hypothesis or
not since the relative velocity does not change with the point of contact. The
module of the relative velocity is

v(r) =
√

(ẋ− v0)2 + ẏ2.

The Rayleigh’s dissipation function is

R = N

∫ v(r)(x)

µ(v) dv = N
{µ0−µ∞

a
ln
[

1+ a
√

(ẋ− v0)2+ ẏ2
]

+ µ∞

√

(ẋ− v0)2+ ẏ2
}

.

Since T = m
2 (ẋ

2 + ẏ2) the equations of motion are

mẍ = Fx−N
{ µ0 − µ∞

1+ a
√

(ẋ−v0)2 + ẏ2
+ µ∞

} ẋ− v0
√

(ẋ−v0)2 + ẏ2
,

mÿ = Fy−N
{ µ0 − µ∞

1+ a
√

(ẋ−v0)2 + ẏ2
+ µ∞

} ẏ
√

(ẋ−v0)2 + ẏ2
,

which could have been obtained directly from Eq. (18). Observe that if Fx

is used to keep the block at x = 0 then it becomes easy to move the block
transversally across the belt since for low speeds ẏ the effective transversal
friction is linear in the velocity.

2.2 Exercise: A rotating disk

Let us consider a disk D of massm and radius r placed on horizontal surface. At
time t = 0 the disk has angular velocity ω about its center and zero translational
velocity. We wish to find at which time τ it will stop under Coulomb friction
and Reye’s assumption.

Let (ρ, θ) be polar coordinates on the disk and let ϕ be our generalized
coordinate, namely the angle of rotation of the disk with respect to a reference

abscissa. The velocity at P (ρ, θ) is v = ϕ̇ρ. The Lagrangian L = T = mr2

4 ϕ̇2

so we have just to calculate R which according to Eq. (21) is

R = µmg[

∫

D

1

ϕ̇ρ
dθρdρ]−1

∫

D

dθρdρ =
µmgr

2
ϕ̇.
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The Lagrange equation is
mr2

2
ϕ̈ = −

µmgr

2

thus the disk stops after a time interval τ = ωr
µg

.

2.3 Exercise: The rotating stone polisher

Let us consider a rotating stone polisher which we describe as two concentric
counter-rotating rings of approximately the same mass m and radius r placed
on a horizontal rough surface (in reality the rings are actually disks and they
are not concentric but we wish to simplify the model). A worker handles the
polisher imparting a force F = (Fx, Fy) and a momentum M to it. Let (x, y)
denote the position of the center and let θ be the orientation of the machine.
We assume Coulomb friction and that the pressure over the rings is uniformly
distributed. Let ω be the angular velocity of the rings, this means that the rings
are rotated of an angle θ ± ωt with respect to a reference abscissa. If the angle
ϕ is used to label the points along the ring, the velocity of the generic point is

v = (ẋ− r sin(θ ± ωt+ ϕ)(θ̇ ± ω), ẏ + r cos(θ ± ωt+ ϕ)(θ̇ ± ω)),

thus

v2± = ẋ2 + ẏ2 + r2(θ̇ ± ω)2

+ 2r(θ̇ ± ω)[−ẋ sin(θ ± ωt+ ϕ) + ẏ cos(θ ± ωt+ ϕ)]

Let (u, φ) be the velocity of the center of the ring in polar coordinates on the
velocity space. We have

v2± = u2 + r2(θ̇ ± ω)2 − 2ur(θ̇ ± ω) sin(θ ± ωt+ ϕ− φ).

We are interested only in the range rω ≫ u, rθ̇ which means that the polisher
is working and rotating sufficiently fast with respect to the translational and
rotational velocity imparted by the agent worker. In this limit

v± = rω[1 ±
θ̇

ω
∓

u

rω
sin(θ ± ωt+ ϕ− φ)

+
1

2
(
u

rω
)2(1− sin2(θ ± ωt+ ϕ− φ))]

up to quadratic terms in the velocity ratios.
Using Eq. (20) the function R is R = R+ +R− where

R± =
µmg

2π

∫ 2π

0

v±(ϕ) dϕ ≃ µmg
(

rω ± rθ̇ +
1

4

ẋ2 + ẏ2

rω

)

Observe that the Rayleigh’s function is expressed directly in terms of the gen-
eralized coordinates (x, y, θ) and the generalized velocities. Since

T =
1

2
m[2(ẋ2 + ẏ2) + 2r2(θ̇2 + ω2)]
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the dynamical equations are

2mẍ = −µmg
ẋ

rω
+ Fx,

2mÿ = −µmg
ẏ

rω
+ Fy ,

2mr2θ̈ = M.

We recover the known and remarkable fact that when the polisher is active
and rotating the Coulomb friction on its parts acts, as a whole, as a Stokes
friction for the translational degrees of freedom, while for the rotating degree of
freedom at the lowest orders the friction does not introduce neither a constant
(Coulomb) nor a linear (Stokes) component. Thus moving the polisher is easy
when it is on and becomes difficult when it is off.

3 Conclusions

In textbooks and specialized articles it is widely held that the Rayleigh dissi-
pation function is really useful only for linear (Stokes, viscous) friction. As a
consequence, it has been often regarded as a mathematical curiosity along with
many other ad hoc methods that have been conceived along the years to deal
with this case. On the contrary, we have shown in this paper that the Rayleigh
dissipation function can be effectively used for non-linear friction as well, with
apparently no theoretical limitations.

In a sense a somewhat negative historical attitude towards the Rayleigh dis-
sipation function, one which prevented a more widespread knowledge of its full
potentialities, can be explained recalling the success of the variational meth-
ods in modern physics. This fact, together with the variational origin of the
Lagrange equation has brought many authors to the identification of the La-
grangian methods with the variational methods. From here a kind of uneasiness
with the non-variational nature of the Rayleigh modification to the Lagrange
equations can be easily understood. However, even historically, the Lagrangian
methods should not be identified with the variational methods as the Lagrange
equations were developed from the principle of virtual works. Its main merit
was that of providing covariant equations. Now, while it is true that the varia-
tion of an action leads to a covariant equation, not all covariant equations arise
in this way. Once it is understood that covariance is much more at the heart
of the success of Lagrangian mechanics than its variational origin it becomes
easy to accept the Rayleigh dissipation function and the consequent treatment
of friction phenomena as an equally worthy part of Lagrangian mechanics.

Of course, it is understood that the method applies only to friction phenom-
ena which can be phenomenologically described with just a response function
µ(v(r)). In many physical applications this is not really the case and in fact in
some circumstances friction might not be treatable within the realm of classical
mechanics [29].
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As a last comment, we hope that the results of this work, by broadening
the applicability of the Rayleigh dissipation function could prove useful to the
scientist and to the teacher alike as these results might be used to generate
many interesting problems and exercises.
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1004–1008. Serie 7.

[17] H. H. Denman. On linear friction in Lagrange’s equation. Am. J. Phys.,
34 (1966) 1147–1149.

[18] J. R. Ray. Lagrangians and systems they describe-how not to treat dissi-
pation in quantum mechanics. Am. J. Phys., 47 (1979) 626–629.

[19] D. H. Kobe, G. Reali, S. Sieniutycz. Lagrangians for dissipative systems.
Am. J. Phys., 54 (1986) 997–999.

[20] P. Villaggio. Wear of an elastic block. Meccanica, 36 (2001) 243–249.

[21] O. M. Braun, M. Peyrard. Dependence of kinetic friction on velocity:
Master equation approach. Phys. Rev. E, 83 (2011) 046129.
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